

13A Cost of purchase

There are a number of costs additional to the retail price when purchasing a new car. Registration, stamp duty and compulsory third-party insurance are compulsory costs. There may also be a dealer delivery charge, other insurance costs and, if borrowing money to purchase the car, interest charges on the loan.

Registration

The fee to transfer the registration of a vehicle from one owner to another in 2012 was $\$ 29$.
The cost of registration of a new vehicle depends on the tare (unladen) weight of the vehicle (this is also referred to as the 'kerb weight') and whether the vehicle is being used mostly for private use or mostly for business use. The table below shows some of these costs.

Table 1: Registration of motor vehicles in NSW

Size of vehicle	Tare weight	Private use (\$)	Business use (\$)
Cars, station wagons, trucks	up to 975 kg	243	358
	976 kg to 1154 kg	272	400
	1155 kg to 1504 kg	321	472
	1505 kg to 2504 kg	459	5
Motor cycles		112	

Source: www.rta.nsw.gov.au/

Stamp duty

Stamp duty is a state tax based on the market value or price paid, whichever is the greater, of the vehicle. It is charged at the following rate:
3% of the market value up to $\$ 45 \% 00$ pres
5% of the value over $\$ 45000$.
(Go to the RTA website and cick on the link to stamp duty for the costs for NSW.)

Insurance

Compulsory third-party (CTP) insurance, often referred to as a 'green slip', is necessary to register a vehicle in NSW. It provides compensation to other people injured or killed when your vehicle is involved in an accident. (It does not cover damage to other vehicles, property, your vehicle or theft of your vehicle. Other types of insurance are available for these incidents.) The cost of a green slip varies depending on a number of factors including the type and age of vehicle, where the car is garaged, and the age and driving record of the drivers. You can get examples of CTP premiums (costs) on the Motor Accidents Authority website at www.maa.nsw.gov.au.

There are other types of insurance available for motor vehicles, such as comprehensive insurance and third-party property insurance. These are not compulsory, but are advisable.

- Comprehensive insurance covers damage to, or theft of, your vehicle as well as damage to other vehicles and property.
- Third-party property damage car insurance covers you for damage caused by your car to someone else's car or property. (It does not cover damage to, or theft of, your car.)
Comprehensive insurance is more expensive than third-party property insurance because it covers more types of incidents. Both types of insurance vary in price according to factors such as the driver's age, driving experience, driving record, the type and age of the vehicle and where it is garaged. Many insurance companies will give an online quote for car insurance.

Dealer delivery

When purchasing a new car, the dealer will often charge a fee for 'dealer delivery'. This fee represents the cost to the dealer of preparing the car for delivery to the buyer. The fee varies from dealer to dealer and is sometimes waived or reduced in order to induce people to buy from them.
(New car prices can be found at www.redbook.com.au.)

Trade-in

As part of the agreement, when you purchase a new car the dealer will usually buy your current car, if you have one, at an agreed price. When you sell your current car to the dealer in this way, it is called a trade-in.

WORKED EXAMPLE 1

Use the Table 1 to determine how much extra it costs to register a new Toyota Corolla, which weighs 1250 kg , for business use compared with private use.

Solve	Think	Apply
Extra cost $=\$ 472-\$ 321$ $=\$ 151$	In Table $1,1250 \mathrm{~kg}$ is in the range 1155 kg to 1504 kg Cost for business use $=\$ 472$ Cost for private use $=\$ 321$	In the table, find the weight range in which the vehicle lies and read off the costs for business and private registration. Find the differ ce between these two costs.

EXERCISE 13A

1 Complete the following to calculate the cost cf registration, for private use, for a vehicle that weighs 1360 kg . In the table, 1360 kg is in the range Kg to \qquad kg.
\therefore Cost to register for private rs? $=$ \qquad
2 Use the table to calculate the cost of registration, for private use, for a vehicle that weighs:
a 1820 kg
b 1150 kg

3 How much extra does it cost to register, for business use compared with private use, a vehicle that weighs:
a 2130 kg ?
b 975 kg ?

12F 4 The information in the table was used to draw the step graph of cost of registration versus weight, for private use of a vehicle.
a Copy the graph and discuss its features.
b On the same axes, draw a graph of cost of registration versus weight for business use of a vehicle.
c Use the graphs to find the cost to register a vehicle that weighs:
i 1000 kg , for private use

ii 1450 kg , for business use
d Use the graphs to find the difference between the cost of registration for private use and the cost for business use for a vehicle that weighs:
i 1750 kg
ii 1200 kg

WORKED EXAMPLE 2

Calculate the stamp duty to be paid on the purchase of a new Mazda RX8 that has a recommended retail price of $\$ 57000$.

Solve	Think	Apply
$\begin{aligned} \text { Stamp duty }= & 0.03 \times 45000 \\ & +0.05 \times(57000-45000) \\ = & \$ 1950 \end{aligned}$	$\begin{aligned} & 3 \%=0.03 .3 \% \text { of } \$ 45000 \\ & =0.03 \times \$ 45000 \end{aligned}$ The value over $\$ 45000$ $\begin{aligned} & =\$ 57000-\$ 45000 \\ & 5 \%=0.05 .5 \% \text { of the value } \\ & \text { over } \$ 45000 \\ & =0.05 \times(\$ 57000-\$ 45000) \end{aligned}$	If the price paid for the car is not more than $\$ 45000$, the stamp duty is 3% of its price. If the price is more than $\$ 45000$, the stamp duty is 3% of $\$ 45000$ (\$1350) plus 5\% of $\$$ (price - 45000).

5 Complete the following to calculate the stamp duty.
a Market value $=\$ 17900$
Stamp duty $=3 \%$ of $\$$ \qquad

$$
=0.03 \times \$ _=\$
$$

b Market value $=\$ 52380$
Stamp duty \qquad $\%$ of $\$ 45000+$ \qquad $\%$ of \$__ - \$45000
\qquad $\times \$ 45000+0$. \qquad $\times \$$ \qquad

$$
=\$
$$

\qquad
6 Calculate the stamp duty that would be charged or ret icle whose market value is:
a $\$ 21990$
b $\$ 35699$
c $\$ 49000$
d $\$ 93600$

7 a Complete the following table
Stamp duty on vehicle

Price $(\$ 000)$	$\mathbf{3 \%}$	$\mathbf{5 \%}$	Total
10	$0.03 \times \$ 10000=\$ 300$		
20			
30			
40			
45	$0.03 \times \$ 10000=\$ 300$		$\$ 160$
50	$0.03 \times \$ 10000=\$ 300$		
60	$0.03 \times \$ 10000=\$ 300$	$0.05 \times(\$ 50000-\$ 45000)=\$ 250$	
70		$0.05 \times(\$ 60000-\$ 45000)=\$ 750$	
80			

b Use the information in the table to draw a graph with price as the independent variable, on the horizontal axis, and stamp duty, as the dependent variable, on the vertical axis. (This is a piecewise function. It is defined by more than one formula: in this case 3% of the market value up to $\$ 45000$, plus 5% of the value over $\$ 45000$.
c Use the graph to estimate the stamp duty on a vehicle purchased for:
i \$35000
ii $\$ 65000$
iii \$99 000

WORKED EXAMPLE 3

a Calculate the total cost to purchase a new Ford Falcon given that the recommended retail price (RRR) is $\$ 37000$, it weighs 1704 kg , CTP insurance is $\$ 487$ and the dealer delivery charge is $\$ 528$. The car is for private use and the owner decides to take out comprehensive insurance that costs $\$ 960$ for the first year.
b If she receives a trade-in of $\$ 15000$ on her current vehicle what is the change over price for the new vehicle?

	Solve	Think	Apply
a	$\begin{aligned} & \mathrm{RRP}=\$ 37000 \\ & \text { Registration }=\$ 459 \\ & \begin{array}{l} \text { Stamp duty }=0.03 \times \$ 37000 \\ \quad=\$ 1110 \\ \text { CTP insurance }=\$ 487 \\ \text { Dealer delivery }=\$ 528 \\ \text { Comprehensive insurance }=\$ 960 \\ \text { Total }=\$ 40544 \end{array} \end{aligned}$	The weight of the car $(1704 \mathrm{~kg})$ is in the range 1505 kg to 2504 kg . From the table, the registration cost for private use is $\$ 459$. The price of the car is less than $\$ 45000$; so stamp duty is 3% of its price (\$37000). Add all costs to the RRP of the car.	Use the weight of the vehicle to determine the registration cost from the table. Calculate the stamp duty. Add all the extra costs to the RRP of the car.
b	Change over price $\begin{aligned} & =\$ 40544-\$ 15000 \\ & =\$ 25544 \end{aligned}$	Total cost $=\$ 40544$. Trade-in price $=\$ 15000$. Changeover price is the difference.	The changeover price is the total price of the vehicle less the trade-in.

8 Complete the following table to calculate the total cost to purchase each of the lollowing new vehicles.

Costs	Commodore	Mazda 6	Yaris	Prado	Yamaha motorcycle
RRP (\$)	36490	28490	18000	52870	14999
Weight (kg)	1637			1040	1970
Private or business	B				B
Registration (\$)					
Stamp duty (\$)					
CTP insurance(\$)	620	487	528	660	280
Dealer delivery (\$)	790	585	499	887	389
Insurance (\$)	1089	790	560	1185	299
Total					

WORKED EXAMPLE 4

Find the total cost to purchase a 3-year-old Honda Civic that has an advertised price of $\$ 10500$. Third-party property damage insurance is $\$ 479$.

Solve	Think	Apply
$\begin{aligned} & \text { Dealer price }=\$ 10500 \\ & \text { Transfer of registration }=\$ 29 \\ & \text { Stamp duty }=0.03 \times \$ 10500 \\ & \quad=\$ 315 \\ & \text { Insurance }=\$ 479 \\ & \text { Total }=\$ 11323 \end{aligned}$	Transfer of registration fee is $\$ 29$ for used vehicles. The price of the car is less than $\$ 45000$; therefore stamp duty is 3% of its price (\$10500).	The transfer of registration fee must be paid. Stamp duty is charged whenever there is a change of ownership of a vehicle. Because the compulsory CTP insurance was paid when the car was last registered, there is no CTP insurance to pay until the next time it has to be registered.

9 Complete the following to find the total cost of buying a 4 -year-old Nissan 350 Z that is advertised for $\$ 43900$. Comprehensive insurance is $\$ 1560$.

Dealer price $=\$ 43900$
Transfer of registration $=\$$ \qquad
Stamp duty $=0.03 \times \$$ \qquad $=\$$ \qquad
Insurance $=\$$ \qquad
Total $=\$$ \qquad
10 Find the total cost to purchase a 1-year-old Toyota Camry that has an advertised price of $\$ 23900$. Third party property insurance is $\$ 463$.

11 Find the total cost to purchase a 2-year-old Kawasaki 1400 cc motorcycle that has an advertised price of $\$ 14890$. Comprehensive insurance is $\$ 678$.

12 a Go to the Motor Accidents Authority website at www.maa.nsw.gov.au and use the following information to get a quote on a green slip for a new car:

Richard is buying a new car. There is no entitlement to GST input credit. The commencement date for the insurance will be the $1 \mathrm{st} /$ next month/this year. The vehicle is a new Mazda 6 Limited 2.5 L sedan that is normally garaged at Parramatta, postcode 2150 . The car will be privately owned and will be registered for private use. It does not have a current CTP insurance policy because it is a new car. It will also be covered by comprehensive insurance with NRMA Insurance. Richard has continuously beth comprehensive insurance with this company for 2 years. The policy does not have a no-clam liscount. Richard, the sole owner/driver, is 20 years old and has not had any accidents in the lat, years and has no demerit points lost. Richard obtained his licence 3 years ago. He is not a member of NRMA roadside service.
b What is the cheapest quote?
c What would the cheapest quote be if Richard has had cie at-fault accident and has lost 4 demerit points.
13 a Search the internet for an insurance company (sach as NRMA insurance at ww.nrma.comaul) and use the following information to get a quete fromprehensive insurance on a new car:

Vehicle details: Toyota Cordia Ascent Hatchback 1.8. Usually garaged at Manly, postcode 2095.
Insurance cover required $\$ 21990$.The car is for private use and the owner has no finance owing on the car. The drivel is a 20 -year-old male (enter a date of birth that makes the driver 20 -years old) with 2 years driving experience and has had no accidents. He wants an excess of $\$ 600$ on the policy and has no other relevant policies or memberships. As this is the first car he has bought there is no previous insurer.
b Vary the age of the driver (say 20, 25, 30, 35 years, etc.). Record and compare costs.
c Vary the gender of the driver for the same ages and compare costs.
d Using a map and list of postcodes, vary the locality in which the vehicle is garaged and compare costs.
e Investigate the change in costs when the driver has had an at-fault accident.
f Vary the type of vehicle and compare costs, such as small versus large passenger vehicle, 4WDs, people movers, light commercial.
g Compare the costs from other insurers. (Try www.thebuzzinsurance.com.au.)
h Is there an age excess to be paid on top of the basic excess?
14 Investigate and compare the advantages and disadvantages of comprehensive and third-party property insurance for cars. In what circumstances might one form of insurance be more suitable than the other?

15 Investigate and compare the costs of third-party property insurance at www.nrma.com.au/car-insurance/. Use the example and investigations suggested in question $\mathbf{1 0}$.

16 From the information gathered in the previous questions, make a list of the factors that affect insurance premiums (such as type of vehicle, driver experience, etc.)

13B Financing a purchase

Often people need to borrow money to buy a car. There are many financial institutions that will provide a car loan or personal loan for this purpose.

WORKED EXAMPLE 1

The following table gives the monthly repayments (\$) for every $\$ 1000$ borrowed on a reducing balance car loan.

Interest rate (\% p.a.)	Term of loan (months)					
	12	24	36	48	60	
8	86.99	45.23	31.34	24.41	20.28	
9	87.45	45.68	31.80	24.89	20.76	
10	87.92	46.14	32.27	25.36	21.25	
11	88.38	46.61	32.74	25.85	21.74	
12	88.85	47.07	33.21	26.33	22.24	
13	89.32	47.54	33.69	26.83	22.75	
14	89.79	48.01	34.18	27.32	23.27	

a Calculate the monthly repayments on a loan of $\$ 23600$ at 9% p.a. recicd over 5 years.
b What is the total amount of interest paid on this loan?
c How much would be saved by repaying the loan over 4 years nstead of 5 years?
a

Solve		
Monthly repayment $\begin{aligned} & =\$ 20.76 \times 23.6 \\ & =\$ 489.94 \end{aligned}$	ears $=60$ months From the table, monthly repayment on $\$ 1000$ over 60 months at 9% p.a. is $\$ 20.76$. The number of $\$ 1000$ s being borrowed $=\frac{23600}{1000}=23.6$. Monthly repayment $=\$ 20.76 \times 23.6$	Convert the term of the loan to months. Find the monthly repayment on $\$ 1000$ from the table for the interest rate and term. Divide the amount of the loan by 1000 to determine the number of thousands (\$) borrowed. Multiply the monthly repayment for $\$ 1000$ by the number of 1000 s borrowed.
Total amount repaid $=\$ 489.94 \times 60=\$ 29396.40$ Interest paid $\begin{aligned} & =\$ 29396.40-\$ 23600 \\ & =\$ 5796.40 \end{aligned}$	Total amount repaid $=\$ 489.94 \times 60$ Amount borrowed was $\$ 23600$. Interest paid over 5 years $=\$ 489.94 \times 60-\$ 23600$	Total amount repaid is monthly repayment multiplied by number of months. The difference between this and the amount borrowed is the interest paid on the loan.
Monthly repayment over 4 years $=\$ 24.89 \times 23.6=\$ 587.40$ Total amount repaid $=\$ 587.40 \times 48=\$ 28195.20$ Amount saved $\begin{aligned} & =\$ 29396.40-\$ 28195.20 \\ & =\$ 1201.20 \end{aligned}$	Amount saved $=$ amount repaid over 5 years - amount repaid over 4 years Amount saved is the difference between $\$ 6396.40$ and $\$ 5195.20$.	The amount saved is the difference between the total amount repaid over the longer term and the total amount repaid over the shorter term.

Note: Most financial institutions have an online calculator that can be used to calculate monthly repayments on a loan. Visit www.aussie.com.au or www.savingsloans.com.au.

EXERCISE 13B

Use the table in Example 1 of this section, or an online calculator, to answer the following questions.
1 Complete the following to calculate the monthly repayments on a car loan of $\$ 22700$ at 12% p.a. reducible over 4 years.

4 years = \qquad months
From the table, the monthly repayment on $\$ 1000$ over \qquad months at 12% p.a. $=\$$ \qquad
Number of $\$ 1000$ s being borrowed $=\frac{22700}{1000}$

$$
=
$$ motorbike of around \$22000

$$
\begin{aligned}
& \quad \therefore \text { Monthly repayment on } \$ 22700=\$ _ \\
& 2 \text { Calculate the monthly repayments on a car loan of: } \\
& \text { a } \$ 25000 \text { at } 11 \% \text { pa. reducible over } 4 \text { years } \\
& \text { b } \$ 13600 \text { at } 9 \% \text { p.a. reducible over } 3 \text { years } \\
& \text { c } \$ 38900 \text { at } 14 \% \text { pa reducible over } 5 \text { years }
\end{aligned}
$$ \times \qquad

3 Calculate, for the following loans:
i the monthly repayment
ii the total amount of interest paid
a $\$ 18200$ at 10% p.a. over 4 years
b $\$ 8700$ at 8% p.a. over 2 years
c $\$ 34800$ at 12% pa over 5 years
4 Heidi is offered a car loan of $\$ 4$ Co at 9% p.a. over either 3 or 4 years. Havenuch would she save if she chose the shorter erm?

5 a Jack needs to borrow $\$ 19600$ to buy a car and can pay a maximum of $\$ 450$ per month. He is offered a loan at 12% p.a. Can he afford to take out the loan? Give details.
b Could he afford the loan if the interest rate was 14% ? What advice would you give Jack?

6 a Jo's monthly repayment on a loan at 13% p.a. over 3 years is $\$ 808.56$. How much did Jo borrow?
b Ben's monthly repayment on a loan at 10% p.a. over 4 years is $\$ 798.84$. How much did Ben borrow?

13011 Photo of someone in a caryard (or similar) obviously buying a car: say jack and car around $\$ 20000$.

INVESTIGATION 13.1

WORKED EXAMPLE 1

A car travels 416 km on 50 L of petrol. Calculate the fuel consumption of the car on this trip.

Solve	Think	Apply
$\begin{aligned} \text { Fuel consumption } & =\frac{416 \mathrm{~km}}{50 \mathrm{~L}} \\ & =8.32 \mathrm{~km} / \mathrm{L} \end{aligned}$ Car travels 8.32 km on 1 L of petrol. $\begin{aligned} \text { Fuel consumption } & =\frac{50 \mathrm{~L}}{416 \mathrm{~km}} \\ & =0.12 \mathrm{~L} / \mathrm{km} \end{aligned}$ Car uses 0.12 L of petrol for every 1 km travelled. $0.12 \mathrm{~L} / \mathrm{km}=12 \mathrm{~L} / 100 \mathrm{~km}$ So the car consumes 12 L of petrol for every 100 km travelled.	Divide distance travelled (416 km) by amount of petrol used (50 L). Divide amount of petrol used (50 L) by the distance travelled (416 km). This is $0.12 \mathrm{~L} / \mathrm{km}=\frac{0.12 \times 100}{1 \times 100 \mathrm{~km}}$ or $12 \mathrm{~L} / 100 \mathrm{~km}$, which is the most common way of expressing fuel consumption.	Fuel consumption is a comparison between two types of quantities, distance travelled and amount of fuel used: it is a rate. It can be determined by dividing the distance travelled by the amount of fuel used, giving the number of kilometres travelled on 1 L of petrol, or by dividing the amount of fuel used by the distance travelled, siving the amount of fuel consurned in travelling 1 km . For case of comparison, this last rate is usually expressed as L/100 km.

EXERCISE 13C

2G 1 If a car uses 35 L of petrol cin a A ip of 400 km , complete the following to calculate the fuel consumption in:
a km / L
b L/km
c $\mathrm{L} / 100 \mathrm{~km}$
a Fuel consumplio $=\frac{400 \mathrm{~km}}{\square \mathrm{~L}}=_\mathrm{L} / \mathrm{km}$
b Fuel consumption $=\frac{35 \mathrm{~L}}{\square} \mathrm{~km}=\ldots \mathrm{L} / \mathrm{km}$
c Fuel consumption $=$ \qquad $\mathrm{L} / \mathrm{km}=$ \qquad \times \qquad $\mathrm{L} / 100 \mathrm{~km}=$ \qquad L/100 km

2 Calculate the fuel consumption for the following trips in:
i km/L
ii L/km
iii $\mathrm{L} / 100 \mathrm{~km}$
a A car travels 260 km on 28 L of petrol.
b A car travels 220 km on 19 L of petrol.
c A car travels 420 km on 48 L of petrol.

WORKED EXAMPLE 2

How far can a Toyota Corolla travel on 48 L of petrol if its petrol consumption is $7.4 \mathrm{~L} / 100 \mathrm{~km}$?

Solve	Think	Apply
Distance $=\frac{48}{7.4} \times 100$ $=649 \mathrm{~km}$	The number of 'lots of 7.4 L' used $=\frac{48}{7.4}$ The car travels 100 km for each 'lot of 7.4 L' used.	Distance travelled (km) $=$ amount of fuel used/fuel consumption (in L/100 km) $\times 100$

3 Complete to calculate how far a vehicle can travel on 45 L of fuel if the fuel consumption is $6.4 \mathrm{~L} / 100 \mathrm{~km}$.

$$
\text { Distance }=\frac{45}{\square \times 100}=\ldots \mathrm{km}
$$

4 How far can a vehicle travel on:
a 35 L of fuel if the fuel consumption is $8.4 \mathrm{~L} / 100 \mathrm{~km}$?
b 66 L of fuel if the fuel consumption is $9.6 \mathrm{~L} / 100 \mathrm{~km}$?
c 94 L of fuel if the fuel consumption is $12.2 \mathrm{~L} / 100 \mathrm{~km}$?

WORKED EXAMPLE 3

Calculate the amount of petrol used by a Holden Commodore on a trip of if its petrol consumption is $11 \mathrm{~L} / 100 \mathrm{~km}$.

Solve	Think	Apply
Petrol used $=\frac{640}{100} \times 11$	The number of 'lots of 100 km' travelled $=640 / 100(=6.4)$	Amount of fuel used (L) $=$ distance travelled $/ 100$ $=70.4 \mathrm{~L}$
Each 'lot of $100 ' \mathrm{~km}$ uses 11 L of petrol.	\times consumption (in L/100 km)	

5 Complete the following to calculate the amount of fuel used by a vehicle on a trip of 1160 km , if the fuel consumption is $10.6 \mathrm{~L} / 100 \mathrm{~km}$.

Fuel used $=\frac{\square}{100 \times \square}=_\approx \ldots$ L
6 Calculate the amount of fuel used by a vehicle on a trip of:
a 325 km , if the fuel consumption is $8.4 \mathrm{~L} / 100 \mathrm{~km}$
b 540 km , if the fuel consumption is $12.2 \mathrm{~L} / 100 \mathrm{~km}$
c 270 km , if the fuel consumption is $6.7 \mathrm{~L} / 100 \mathrm{kn}$.
7 A sales representative averages 3400 km of city driving each month in a Ford Falcon that uses $11.4 \mathrm{~L} / 100 \mathrm{~km}$ (city cycle). Calculate the monhly cost of petrol used in a month in which the average price of unleaded petrol (ULP) is $149.9 \mathrm{c} / \mathrm{L}$.

8 In 2006 the average fuel consumption of Australian vehicles was $13.8 \mathrm{~L} / 100 \mathrm{~km}$ and the average yearly distance travelled was 17600 km . If the average price of fuel was $135.9 \mathrm{c} / \mathrm{L}$, what was the average yearly fuel cost?

9 A Citroën C4 uses $7.6 \mathrm{~L} / 100 \mathrm{~km}$ of ULP and the diesel version of the same car uses $6 \mathrm{~L} / 100 \mathrm{~km}$ of diesel fuel.
a Calculate the cost to drive the petrol version 780 km if ULP is $152.9 \mathrm{c} / \mathrm{L}$.
b Calculate the cost to drive the diesel version 780 km if diesel fuel is $162.2 \mathrm{c} / \mathrm{L}$.
c How much cheaper is the diesel option over this distance?
10 Harry owns a Holden Commodore that runs on ULP and uses $10.6 \mathrm{~L} / 100 \mathrm{~km}$. When converted to run on liquid petroleum gas (LPG), it uses $13.5 \mathrm{~L} / 100 \mathrm{~km}$. Harry averages 19000 km per year.
a Calculate the annual fuel cost for each type of fuel (assuming the car only runs on one type of fuel for a year) if the average price of ULP is $149.9 \mathrm{c} / \mathrm{L}$ and of LPG is $67.8 \mathrm{c} / \mathrm{L}$?
b How much a year would Harry save in fuel costs if he converted to the LPG model?
c What is the saving per month?
d The cost of converting the car to LPG is $\$ 2600$. How many months would it take to break even, if Harry converts to LPG?
e What distance would Harry travel before reaching the break-even point? (The break-even point is the point at which the cost of running on each type of fuel is the same.)

11 A car is available with a petrol motor or diesel motor. The petrol version uses $12.8 \mathrm{~L} / 100 \mathrm{~km}$ and the diesel $7.8 \mathrm{~L} / 100 \mathrm{~km}$. Jenny averages 13000 km per year.
a i If Jenny bought the car with the petrol engine, what would be her annual fuel cost if ULP is $152.9 \mathrm{c} / \mathrm{L}$?
ii If Jenny bought the car with a diesel engine, what would be her annual fuel cost if diesel fuel is 169.9c/L?
iii How much per year would she save by buying the car with the diesel engine?
b What is the average monthly saving?
c The diesel car costs $\$ 1200$ more to buy than the petrol car. How many months would it take to break even if Jenny buys the diesel car?
d What distance would Jenny travel before reaching the break-even point?

12 a A large 4WD uses $15 \mathrm{~L} / 100 \mathrm{~km}$ when running on ULP. The cost of ULP is $\$ 1.50 / \mathrm{L}$. Complete the table below to show the fuel cost of driving this car.

Distance travelled (km)	0	10000	20000	30000	40000	50000
Fuel cost (\$)	0	2250				

b Use the information in the table to draw a graph of fuel costerisus distance travelled.
c When converted to LPG the fuel consumption of this vehicle is $19.5 \mathrm{~L} / 100 \mathrm{~km}$. The cost of converting this vehicle to LPG is $\$ 3500$ and the cost of I P (is $7 \mathrm{yc} / \mathrm{L}$. Complete the following table to show the cost of driving this vehicle.

Distance travelled (km)	0	10000	20000	30000	40000	50000
Fuel cost (\$)	3500	4865				

d On the same axcs as in part \mathbf{b}, draw a graph of fuel cost versus distance travelled for the LPG vehicle.
e From the graph, estimate the distance travelled to reach the break-even point.
13 a A car, when running on ULP, uses $12 \mathrm{~L} / 100 \mathrm{~km}$. The cost of ULP is $\$ 1.50 / \mathrm{L}$. Complete the table below to show the cost of driving this car.

Distance travelled (km)	0	10000	20000	30000	40000	50000
Fuel cost (\$)	0	1800				

b Use the information in the table to draw a graph of fule cost versus distance travelled.
c The diesel motor version of the same car costs $\$ 1400$ more than the petrol version and uses $8 \mathrm{~L} / 100 \mathrm{~km}$.
Diesel fuel costs $\$ 1.60 / \mathrm{L}$. Complete the following table to show the cost of driving this car.

Distance travelled (km)	0	10000	20000	30000	40000	50000
Fuel cost (\$)	1400	2680				

d On the same axes as in part \mathbf{b}, draw a graph of fuel cost versus distance travelled, for the diesel car.
e From the graph, estimate the distance travelled to reach the break-even point.

INVESTIGATION 13.2

13D
 Depreciation

The depreciation of an item is its loss in value due to age and usage. The value of an item after depreciation is called its salvage value, or book value, or written down value.

EXERCISE 13D

1 The table gives the value of some new cars after 1 year.

Make	Value (RRP) when new (\$)	Value after 1 year (\$)	Decrease in value (\$)	Decrease in value (\%)
Ford Falcon	37225	25500	11735	$11735 \div 37225 \times 100=32 \%$
Holden Commodore	39990	29600		
Toyota Aurion	35990	25300		
Kia Rio	18290	15700		
Mazda 3	22330	19700		
Toyota Corolla	22990	19800		
Honda Accord Euro	40140	36500		
Mazda 6	33450	29500		
Land Rover Discovery	84300	78000		
Mitsubishi Pajero	63190	57900		
Toyota Prado	64490	64800		
Mercedes-Benz E220	83300	71400		
BMW 325	6335	75400		
Jaguar X-Type	59435	45200		

a Complete the table by finding the decrease in value and percentage decrease in value for each vehicle.
b Which vehicle depreciated the most?
c Do some categories (such as car make, large, small, luxury, 4WD, etc.) depreciate more than others?

WORKED EXAMPLE 1

Construct a table to calculate the value of a $\$ 20000$ car after 3 years if it depreciates $\$ 3400$ each year.

Solve				Think
Year	Value (\$)	Depreciation (\$)	Depreciated value (\$)	$\begin{aligned} \text { Value end of year } 1 & =\$ 20000-\$ 3400 \\ & =\$ 16600 \\ \text { Value end of year } 2 & =\$ 16600-\$ 3400 \\ & =\$ 13200, \text { etc. } \end{aligned}$
1	20000	3400	16600	
2	16600	3400	13200	
3	13200	3400	9800	

Subtract the amount of depreciation from the value at the beginning of the year.
Note: Value at beginning of year $=$ value at end of previous year.

Example 1 is an illustration of the straight-line method of depreciation, which assumes that the item depreciates by a constant amount each year.

The formula for the straight line method is $S=V_{0}-D n$
where $\quad S=$ salvage (current) value of asset
$V_{0}=$ purchase price of asset
$D=$ amount of depreciation apportioned per time period
$n=$ total number of time periods

WORKED EXAMPLE 2

A car purchased for $\$ 14900$ depreciates $\$ 1660$ per year. Calculate its book value after 5 years.

Solve	Think	Apply		
S	$=V_{0}-D n$			
	$=14900-1660 \times 5=\$ 6600$		\quad	Substitute $V_{0}=14900, D=1660$,
:---				
$n=5$ into the formula.	\quad	Substitute the values of V_{0}, D and		
:---				
n into the formula $S=V_{0}-D n$.				

2 A car purchased for $\$ 26990$ depreciates $\$ 3300$ per year. Complete to calculate its book value after:
a 2 years
b 4 years

$$
\begin{aligned}
S & =V_{0}-D n \\
& =\$ 26990-\$ _\quad \times 2=\$
\end{aligned}
$$

$S=V_{0}-D n$
$=\$ \quad-\infty \times \times=$
\qquad

3 A car purchased for $\$ 18700$ depreciates $\$ 1980$ per year. Calculat its book value after:
a 2 years
(b) 5 years

4 A car purchased for $\$ 38999$ depreciates $\$ 4200$ ner year. Calculate its book value after:
a 2 years
b 5 years

WORKED EXAMPE 3

A car purchased for $\$ 21990$ was worth $\$ 11990$ after 4 years, using the straight-line method of depreciation. Calculate the annual amount of depreciation.

Solve	Think	Apply
$\begin{aligned} S & =V_{0}-D n \\ \$ 11990 & =\$ 21990-D \times 4 \\ 4 D+\$ 11990 & =\$ 21990 \\ 4 D & =\$ 21990-\$ 11990 \\ & =\$ 10000 \\ \therefore D & =\$ 2500 \end{aligned}$	Substitute $S=\$ 21990, V_{0}=\$ 11990$, $n=4$ into the formula. $\$ 11990=\$ 21990-D \times 4$ Add $4 D$ to both sides. Subtract $\$ 11990$ from both sides. Divide both sides by 4 .	Substitute the given values into the formula $S=V_{0}-D n$ and solve the resulting equation.

5 A car purchased for $\$ 22790$ was worth $\$ 14190$ after 4 years, using the straight-line method of depreciation. Complete the following to calculate the annual amount of depreciation.

$$
\begin{aligned}
S & =V_{0}-D n \\
& =--D \times 4 \\
4 D+\square & =- \\
4 D & =- \\
\therefore D & =
\end{aligned}
$$

6 A car purchased for $\$ 45900$ was worth $\$ 35150$ after 5 years, using the straight-line method of depreciation. Calculate the annual amount of depreciation.

7 A car that was purchased for $\$ 36760$ was worth $\$ 14460$ after 5 years, using the straight-line method of depreciation. Calculate the annual amount of depreciation.

8 A car purchased for \$15570 depreciates \$3120 each year. According to the straight-line formula, after how many years is the car worthless?

9 A car purchased for $\$ 22880$ depreciates $\$ 3200$ each year. According to the straight-line formula, after how many years is the car worthless?

WORKED EXAMPLE 4

Construct a table to calculate the value of a $\$ 20000$ car after 3 years if its rate of depreciation is 20% p.a.

Solve				Think
Year	Value (\$)	Depreciation (\$)	Depreciated value (\$)	Using 20\% = 0.2$\begin{aligned} \text { Depreciation year } 1 & =0.2 \times \$ 20000 \\ & =\$ 4000 \end{aligned}$
1	20000	4000	16000	
2	16600	3200	12800	
3	12800	2560	10240	F $=\$ 16000$
				$\begin{aligned} \text { Depreciation year } 2 & =0.2 \times \$ 16000 \\ & =\$ 3200 \\ \text { Value end of year } 2 & =\$ 16000-\$ 3200 \\ & =\$ 12800 \\ \text { Depreciation year } 3 & =0.2 \times \$ 12800 \\ & =\$ 2500 \\ \text { Value end of year } 3 & =\$ 12800-\$ 2500 \\ & =\$ 10240 \end{aligned}$
Apply				
Amount of depreciation each year $=$ rate of depreciation \times the value of the car at the beginning of the year. Subtract the amount of depreciation from the value at the beginning of the year.				

10 Complete the table to calculate the value of a $\$ 24900$ car after 3 years if its rate of depreciation is 22% p.a.

Year	Value (\$)	Depreciation (\$)	Depreciated value (\$)
1	24900	$0.22 \times 24900=5478$	19422
2	19422	$0.22 \times \ldots=$	
3			

11 Complete the table to calculate the value of a $\$ 34800$ car after 4 years if its rate of depreciation is 18% p.a.

Year	Value (\$)	Depreciation (\$)	Depreciated value (\$)
1	34800	$-\times 34800=$	
2			
3			
4			

Example 4 is an illustration of the declining (or reducing) balance method of depreciation, which assumes that the item depreciates at a constant percentage rate each year.

A formula which can be used for the declining balance method is $S=V_{0}(1-r)^{n}$
where $\quad S=$ salvage (current) value of asset
$V_{0}=$ the purchase price of asset
$R=$ the percentage interest rate, per time period, expressed as a decimal
$n=$ the number of time periods

WORKED EXAMPLE 5

A new car is purchased for $\$ 32000$. It depreciates in value at a rate of 22% per year.
a Calculate the book value of the car after 3 years.
b By what amount has the car depreciated in value after 3 years?

Solve	Think	Apply
$\begin{aligned} S & =V_{0}(1-r)^{n} \\ & =\$ 32000(1-0.22)^{3} \\ & =\$ 15186 \text { (to nearest } \$ \text {) } \end{aligned}$	Substitute $V_{0}=32000$, $r=22 \%=0.22$ and $n=5$ into the formula.	Substitute the values of V_{0}, r and n into the formula $S=V_{0}(1-r)^{n}$.
$\begin{aligned} \text { Depreciation } & =\$ 32000-\$ 15186 \\ & =\$ 16814 \end{aligned}$	Subtract the book value (\$15 186) from the original price (\$32000).	The ansunt of depreciation is the change in value of the car.

12 A new car is purchased for $\$ 35000$. It depreciates in value at a rate of 24% per year. Complete the following.
a To calculate the book value of the car aftor I vears:

$$
\begin{aligned}
S & =V_{0}(1-r)^{n} \\
& =\$ \quad(1-0.24) \\
& =\$ \quad(\text { to the nearest } \$)
\end{aligned}
$$

b To find the amount the car has depreciated in value after 3 years:

$$
\begin{aligned}
\text { Change in value } & =\$ 35000-\$ \\
& =\$
\end{aligned}
$$

13 A new car is purchased for $\$ 19$ 990. It depreciates in value at a rate of 28% per year.
a Calculate the book value of the car after 5 years.
b By what amount has the car depreciated in value after 5 years?
14 A new car is purchased for $\$ 56000$. It depreciates in value at a rate of 35% per year.
a Calculate the book value of the car after 4 years.
b By what amount has the car depreciated in value after 4 years?

13013 Photo of newer car and

 older-looking one: preferably the same make and model (except the model looks different)
WORKED EXAMPLE 6

A car depreciates in value from $\$ 35000$ to $\$ 20000$ in 2 years. Use the declining balance formula to calculate the annual percentage rate of depreciation.

Solve	Think	Apply
$\begin{aligned} & S=V_{0}(1-r)^{n} \\ & \$ 22000=\$ 35000(1-r)^{2} \\ & \frac{\$ 22000}{\$ 35000}=(1-r)^{2} \\ & \sqrt{\frac{\$ 22000}{\$ 35000}}=1-r \\ & 0.7906=1-r \\ & r=1-0.7906 \\ &=0.2094 \approx 0.21 \\ & \therefore \text { Rate of depreciation } \approx 21 \% \end{aligned}$	Substitute $S=\$ 20000, V_{0}=\$ 35000$ and $n=2$ into the formula. $\$ 22000=\$ 35000(1-r)^{2}$ Divide both sides by $\$ 35000$. Take the square root of both sides. Add r to both sides. Subtract 0.7906 from both sides.	Substitute the values of V_{0}, r and n into the formula $S=V_{0}(1-r)^{n}$ and solve the resulting equation.

15 A car depreciates in value from $\$ 29000$ to $\$ 20462$ in 2 years. Complete the following to calculate the annual percentage rate of depreciation using the declining balance formula: $S=V_{0}(1-r)^{n}$.

$$
\begin{aligned}
\$ 20462 & =_(1-r)^{2} \\
\frac{\$ 20462}{\square} & =(1-r)^{2} \\
\sqrt{\frac{\$ 20462}{\square}} & =1-r \therefore- \\
r & =1-\quad \approx
\end{aligned}
$$ \therefore Rate of depreciartor \approx \qquad $\%$

16 A car depreciates in value from $\$ 36000$ to $\$ 1900$ in 2 years. Use the declining balance formula to calculate the annual percentage rate of depreciztion.

17 A car depreciates in value fom, $\$ 4900$ to $\$ 32440$ in 2 years. Use the declining balance formula to calculate the annual percentage ilie of depreciation.

18 A car depreciates in value from $\$ 15000$ to $\$ 4500$ in 3 years. Use the declining balance formula to calculate the annual percentage rate of depreciation.

19 A car depreciates in value from $\$ 68000$ to $\$ 31000$ in 3 years. Use the declining balance formula to calculate the annual percentage rate of depreciation.

20 These graphs show the depreciation of a car using the straight-line method and the reducing balance method.
a What was the purchase price?
b What is the value of the car after 1 year, using both methods?
c When is the car worth $\$ 8000$, for each method?
d When is the book value the same for both methods? What is it?
e When is the greatest difference in book values? How much is it?
f For the straight-line method, what is the annual amount of depreciation?

21 These graphs show the depreciation of a motorcycle using the straight-line method and the reducing balance method.
a What was the purchase price?
b What is the value of the motorcycle after 2 years, using both methods?
c When is the motorcycle worth $\$ 4000$, for each method?
d When is the book value the same for both methods? What is it?
e The motorcycle is scrapped after 5 years, what is its final written down value, under each method?

f For the straight-line method, what is the annual amount of depreciation?
22 These graphs show the depreciation of a car using the straight-line method and the reducing balance method.
a How much is the purchase price?
b What is the value of the car after 2 years, using each method?
c When is the car worth half its original value, using each method?
d When is the book value the same for both methods? What is it?

e For the straight-line method, what is the annual depreciation.
f What is the annual rate of depreciation for the reducing hance method? (Use the method of Example 6.)

WORKED EXAMPLE I

A car is purchased for $\$ 19$ 800. The sirlght-line depreciation amount is $\$ 3800$ and the declining balance percentage rate is 40%.
a Complete a depreciation nable.
b Draw a graph oftle depreciation of the car under both methods, on the same set of axes.
c Find the value of the car after $3 \frac{1}{2}$ years, under each method.
d When is the car worth half its original value, for each method?
e After what time is the depreciated value the same under both methods?

Solve			Think
Year	Straight-line method value (\$)	Declining balance method value (\$)	Method 1 For the straight-line method: Value end of year $1=\$ 19800-\$ 3800=\$ 16000$ Value end of year $2=\$ 16000-\$ 3800=\$ 12200$ etc. For the declining balance method: Depreciation year $1=\frac{40}{100} \times \$ 19800=\$ 7920$ Value end of year $1=\$ 19800-\$ 7920=\$ 11880$ Depreciation year $2=\frac{40}{100} \times \$ 19800=\$ 7920$ Value end of year $2=\$ 11880-\$ 4752=\$ 7128$ etc.
0	19800	19800	
1	16000	11880	
2	12200	7128	
3	8400	4277	
4	4600	2566	
5	800	1540	
6	0	924	

23 A car is purchased for $\$ 19$ 900. The straight-line depreciation amount is $\$ 3700$ and the declining balance percentage rate is 30%.
a Complete the depreciation table.
b Draw a graph of the depreciation of the car under both methods, on the same set of axes.
c From the table, when $n=2, S=$ \qquad for the straight-line method and $S=$ \qquad for the declining balance method.
d From the graphs, when $n=3.5, S \approx$ \qquad for

Year	Straight-line method value (\$)	Declining balance method value (\$)
0	19900	19900
1	16200	13930
2		
3		
4		
5		

e From the graph，the straight line intersects the curve when $n \approx$ \qquad － The values are the same after approximately \qquad years，or \qquad years and \qquad months．

24 A motorcycle used for courier work is purchased for $\$ 11350$ ．The depreciation can be calculated as either $\$ 2100$ per year using the straight－line method，or 32% per year using the reducing balance method．
a Complete a depreciation table showing the depreciated value each year for 5 years using both methods．
b Draw a graph of the depreciation of the motorcycle under both methods，on the same set of axes．
c When，using the straight－line method，is the salvage value less than that of the reducing balance method？
d What is the written－down value of the motorcycle after $3 \frac{1}{2}$ years，using each method？
e When is the motorcycle worth half its original value，under each method？

13E
 Running costs

The total running cost of a vehicle is made up of standing costs（fixed）and operating costs．

Standing costs include the depreciation in value of the vehicle（the loss in value due to age and use），the interest charged on the loan used to purchase it and on－road costs such as registration，CTP insurance and membership of a motoring organisation that provides road－side assistance（for example NRMA）．
Operating costs are running costs that depend on how the vehicle is driven，Sich is the cost of fuel，tyres，servicing and repairs．

EXERCISE 13E

1 Calculate the missing values in the table below of average annual running costs for some vehicles．The calculations are based on buying a Rev vehicle for private use and operating it for 5 years．The interest charges are based on 100% of the +0 tal cost of the new vehicle being financed by a loan．It is assumed that the vehicle travels 15000 km eat i ycar．

Average annual running costs	Ford Focus （small）	Toyota Corolla （small）	Ford Falcon （large）	$\begin{aligned} & \text { Holden } \\ & \text { Commodore } \\ & \text { (large) } \end{aligned}$	Honda CRV （compact SUV）	Toyota RAV4 （compact SUV）
Standing costs：						
Depreciation（\＄）	3120	3136	5980	5928	4628	4784
Interest（\＄）	1524	1560	2444	2444	2340	2288
On－road costs，road service membership（\＄）	1248	957	1092	962	988	1061
Operating costs：						
Fuel（\＄）	1898	1872	2947	2626	2444	
Tyres（\＄）	146	146	132	146	177	208
Service and repairs（\＄）	671	848	614	634		952
Total（\＄）	8607		13209	12740	11445	11633
Average costs：						
Total cost／week（\＄／week）	165.52	163.83		245	220.10	223.71
Total cost／km（c／km）	57.4	56.7	88.1		76.3	77.6

2 For which vehicle is the fuel consumption:
a best?
b worst?

3 For which vehicle are the on-road costs:
a highest?
b lowest?

4 For which vehicle is the service cost:
a highest?
b lowest?

5 What percentage of the total running cost are fuel costs for the:
a Toyota Corolla?
b Toyota RAV4?

6 Calculate the fuel cost per kilometre to run the:
a Ford Focus
b Toyota RAV4

7 What would be the fuel cost to drive a Ford Falcon from Sydney to Melbourne, a distance of 885 km ?
8 If the cost of fuel increases by 10%, what would be the new running costs (per week and per kilometre) of the Honda CRV?

9 The interest charges are based on 100% of the total cost of the new vehicle being financed by a loan.
a What would be the savings over 5 years if cash were paid instead of borrowing the purchase price of a Ford Falcon?
b What would be the annual running costs for a new Honda CRV if cash were paid nstead of borrowing the purchase price?

10 What is the weekly cost of tyres for the:
a Ford Falcon?
Yonda CRV?
11 If the price of the Ford Focus is $\$ 22500$, what is the average yearly rate of depreciation?
12 If the cost of the Honda CRV is $\$ 3+0$ iu.
a what is the average yearly rite of depreciation?
b what will be its depecited value at the end of 5 years?
13 If the Holden Commodore cost $\$ 37000$ to buy, what is the average annual rate of interest charged on the loan?
14 Add another column to the table in question 1 and use the information given below to calculate the total cost/week and total cost/kilometre to run a Nissan Patrol (dealer price $\$ 61440$).

Average depreciation each year is 13.7% of the dealer price.
Average annual rate of loan interest is 6.6% (assume total cost of vehicle is financed by the loan).
On-road costs are $\$ 24$ per week.
Fuel consumption is $14 \mathrm{~L} / 100 \mathrm{~km}$ and fuel costs $165.9 \mathrm{c} / \mathrm{L}$. Assume the vehicle travels 15000 km each year. Tyres cost $\$ 276$ per year.
Services and repairs are $\$ 19.80$ per week.
15 Four people, who live in the same general area and work at the same location, drive to work each day. Richard owns a Ford Falcon, Stephanie a Holden Commodore, Lilly a Honda CRV and Paul a Toyota RAV4.
a Over a 4-week period, how much does it cost each person to drive to work?
b They decide to form a car pool and take turns driving to work on a weekly basis: each person drives everyone to work 1 week out of every 4 weeks. How much does each person save every 4 weeks by forming the car pool?
c What are the annual savings per year, for each person (assume 52 weeks)?

16 Three people drive to work over an average distance of 64 km return, from each of their homes. They work a normal 5-day week. Helen owns a Ford Focus, Greg owns a Toyota Corolla and Peta owns a Toyota RAV4.
a Over a 3-week period, how much does it cost each person to drive to work?
b They form a car pool and take turns driving to work on a weekly basis. How much does each person save every 3 weeks by sharing the driving?
c What are the annual savings per year for each person (assume 52 weeks)?

INVESTIGATION 13.3

13F Blood alcohol concentration (BAC)

Blood alcohol concentration is a measure of the concentration of alcohol in a person's blood. It is expressed as a percentage mass per unit of volume.
For example, a person with a BAC of $0.02(\%)$ has $\frac{0.02}{100} \mathrm{~g}$ of alcohol in every mL of their blood. This is equivalent to $0.02 \mathrm{~g} / 100 \mathrm{~mL}$ or $20 \mathrm{mg} / 100 \mathrm{~mL}$.
BAC can be estimated from tables, formulas and on-line calculators, but it is very important to remember that these are only approximations because they are based on average values and do not apply equally to everyone.
BAC is affected by such factors as whether you are male or female, how much you drink, the length of time that you have been drinking, your weight, whether you are fit, the state of yoviner, whether you are a regular drinker and your mood at the time.
The only way to measure your BAC accurately is with an rep oved' breath analysing unit, known as a 'breathalyser'. An estimate of your BAC can be found by countingtre pumber of standard drinks you consume. A standard drink is any drink that contains 10 g of alcohol. A standaru drink always contains the same amount of alcohol irrespective of the container size or type of drink (obe, vine or spirits).

The number of standard drinks in a container can be calculated using the formula:

$$
N=0.7 \therefore 9 \times V \times A
$$

where $\quad N=$ number of standard drinks
$V=$ the volume of the container in litres
$A=$ percentage of alcohol ($\% \mathrm{alc} / \mathrm{vol}$) in the drink (This is stated on the container.)

WORKED EXAMPLE 1

Calculate the number of standard drinks in a 150 mL glass of red wine given that the alcohol content of the wine is $14.5 \% \mathrm{alc} / \mathrm{vol}$.

Solve	Think	Apply
$\begin{aligned} N & =0.789 \times V \times A \\ & =0.789 \times 0.15 \times 14.5 \\ & =1.7 \end{aligned}$	The volume of the glass $=150 \mathrm{~mL}$ $=0.15 \mathrm{~L}$. Hence $V=0.15$ The alcohol content $=14.5 \% \mathrm{alc} / \mathrm{vol}$ Hence $A=14.5$	Convert the volume of the container to litres and substitute the values of V and A into the formula $N=0.789 \times V \times A$. (0.789 is the specific gravity of ethyl alcohol, the type of alcohol used in beverages.)

EXERCISE 13F

1 Complete the following to calculate the number of standard drinks in:
a a 375 mL stubby of full strength beer with an alcohol content of $4.8 \% \mathrm{alc} / \mathrm{vol}$

$$
\begin{aligned}
N & =0.789 \times V \times A \\
& =0.789 \times \ldots \quad \times 4.8=
\end{aligned}
$$

b a 375 mL stubby of light beer with an alcohol content of $2.7 \% \mathrm{alc} / \mathrm{vol}$

$$
\begin{aligned}
N & =0.789 \times V \times A \\
& =0.789 \times 0.375 \times \ldots
\end{aligned}
$$

2 Calculate (to 1 decimal place) the number of standard drinks in:
a a 120 mL glass of wine with an alcohol content of $12 \% \mathrm{alc} / \mathrm{vol}$
b a 90 mL glass of fortified wine with an alcohol content of $16.5 \% \mathrm{alc} / \mathrm{vol}$
c a 375 mL can of Bourbon and coke with an alcohol content of $6 \% \mathrm{alc} / \mathrm{vol}$
d a 750 mL bottle of white wine with an alcohol content of $11.5 \% \mathrm{alc} / \mathrm{vol}$
e a 275 mL bottle of Vodka and Orange with an alcohol content of 5% alc $/ \mathrm{vol}$
f a six-pack ($6 \times 330 \mathrm{~mL}$) of full strength beer with an alcohol content of $4.9 \% \mathrm{alc} / \mathrm{vol}$

An estimate of your BAC can be found using the formulas:

$$
\mathrm{BAC}_{\text {male }}=\frac{10 N-7.5 H}{6.8 M} \quad \text { and }
$$

where $\quad N=$ number of standard drinks consumed
$H=$ number of hours drinking
$M=$ person's mass in kg

Note:

One standard drink per hour will raise your BAC by $0.01-0.03 \%$. Your BAC will increase at a greater rate if you:

- are female
- have a low body weight
- have not eaten recently
- are drinking highly carbonated drinks
- are unfit
- have an unhealthy liver

WORKED EXAMPLE 2

Calculate the BAC of:
a a 78 kg male who has consumed 5 standard drinks in 3 hours
b a 46 kg female who has consumed 4 standard drinks in 4 hours.

Solve	Think	$\begin{array}{c}\text { Apply }\end{array}$
$\mathrm{BAC}_{\text {male }}$	$=\frac{10 N-7.5 H}{6.8 M}$	
	$=\frac{10 \times 5-7.5 \times 3}{6.8 \times 78}$	$\begin{array}{l}\text { Substitute } N=5, H=3 \text { and } \\ M=78 \text { into the formula }\end{array}$
	$=0.05$	$\begin{array}{l}\text { Substitute the number of } \\ \text { standard drinks consumed, the } \\ \text { number of hours drinking and }\end{array}$
the mass of the person into		
the relevant formula.		

3 Complete the following, using the formulas given above, to calculate the BAC of:
a a 83 kg male who has consumed 6 standard drinks in 3 hours

$$
\begin{aligned}
\mathrm{BAC}_{\text {male }} & =\frac{10 N-7.5 H}{6.8 M} \\
& =\frac{10 \times \square-7.5 \times \square}{6.8 \times \square} \\
& =
\end{aligned}
$$

b a 58 kg female who has consumed 5 standard drinks in 4 hours

$$
\begin{aligned}
\mathrm{BAC}_{\text {female }} & =\frac{10 N-7.5 H}{5.5 M} \\
& =\frac{10 \times \square-7.5 \times \square}{5.5 \times \square} \\
& =
\end{aligned}
$$

4 Using the formulas given, complete the following table.
a

Gender	Mass (kg)	Number of standard drinks consumed	Number of hours drinking	BAC (\%)
Male	70	3	2	
Female	50	4	2	
Male	95	6	3	
Female	57	2	2	

5 An 80 kg adult male wants to keep his $\mathrm{BAC} \leqslant 0.05$.
Complete the following to find how many drinks he can consume in 5 hours.

$$
\begin{aligned}
& \text { Let } \mathrm{BAC}=0.05 \text { then } \\
& 0.05=\frac{10 N-7.5 \times 5}{6.8 \times 80} \\
&=\frac{10 N-[0}{\square} \\
&=10 N- \\
& \overline{\square N}=10 N \\
& \therefore N
\end{aligned}
$$

If he has \qquad standard drinks, his $\mathrm{BAC}=0.05$. For his
$\mathrm{BAC}<0.05$, he can have up to \qquad standard drinks.

6 A 56 kg woman wants to keep her $\mathrm{BAC} \leqslant 0.05$.
How many drinks can she consume in 3 hours?

7 A rule of thumb that can be used to keep a full licence holder under the 0.05 legal limit in NSW is as follows: For males: no more than two standard drinks in the first hour and one standard drink per hour after that.
For females: no more than one standard drink per hour.
Using this rule of thumb, calculate the maximum number of standard drinks that can be consumed if a person wants to stay under 0.05 BAC , by:
a a male in 4 hours
b a male in 6 hours
c a female in 4 hours
d a female in 6 hours

8 Use the rule of thumb above to calculate the answers to questions 5 and 6.

WORKED EXAMPLE 3

If a person's liver can break down alcohol at the rate of $6 \mathrm{~g} / \mathrm{h}$, how long will it take for this person's body to eliminate one standard drink?

Solve	Think	Apply		
Time needed	$=\frac{10}{6} \mathrm{~h}$			
	$=1.666 \ldots \mathrm{~h}$			
	$=1 \mathrm{~h} \mathrm{40} \mathrm{min}$	One standard drink contains 10 g of alcohol. If the liver can eliminate 6 g every hour, then the time needed is $10 \div 6$ hours. $1.666 \ldots \mathrm{~h}\left(=1 \frac{2}{3} \mathrm{~h}\right)=1 \mathrm{~h} 40 \mathrm{~min}$,		
If the rate at which the liver eliminates alcohol is given in g / h then:				
or use the appropriate function				
keys on your calculator.			\quad	Time needed $(\mathrm{h})=\frac{\mathrm{g} \text { of alcohol }}{\text { rate of elimination }}$
:---				

Note: After drinking, the only thing that will reduce your BAC is the passing of time. Drinking coffee, exercising, taking a cold shower or making yourself vomit will not reduce your BAC. Alcohol is eliminated from the body by the liver at a rate between $4 \mathrm{~g} / \mathrm{h}$ and $12 \mathrm{~g} / \mathrm{h}$, at an average of $7.5 \mathrm{~g} / \mathrm{h}$ or 0.75 standard drinks (since a standard drink contains 10 g of alcohol), and can vary considerably depending on your health. This means that it can take the liver more than an hour to eliminate one standard drink.

9 Complete the following to calculate the time it takes a person's body to eliminate ne tandard drink if the person's liver breaks down alcohol at the rate of $7 \mathrm{~g} / \mathrm{h}$.

$$
\begin{aligned}
\text { Time needed } & =\frac{10}{\square} \mathrm{~h} \\
& =\square \mathrm{h} \\
& =\square \quad \mathrm{h} \quad \min
\end{aligned}
$$

10 Calculate the time it takes a person's botr the címinate one standard drink if the person's liver breaks down alcohol at the rate of:
a $5 \mathrm{~g} / \mathrm{h}$
b $10 \mathrm{~g} / \mathrm{h}$
c $4 \mathrm{~g} / \mathrm{h}$
d $12 \mathrm{~g} / \mathrm{h}$
e $7.5 \mathrm{~g} / \mathrm{h}$

The liver breaks down alcohol at an average rate of 0.75 standard drinks per hour.
A formula that can be used to calculate the time it takes for your BAC to fall to zero is:

$$
T=\frac{\mathrm{BAC}}{0.015}
$$

where $T=$ the number of hours you must wait

WORKED EXAMPLE 4

Calculate how long you must wait for your BAC to drop to zero from 0.05%.

Solve	Think	Apply
$\begin{aligned} T & =\frac{\mathrm{BAC}}{0.015} \\ & =\frac{0.05}{0.015} \\ & =3 \mathrm{~h} 20 \mathrm{~min} \end{aligned}$	Substitute BAC $=0.05$ into the formula. $\begin{aligned} \frac{0.05}{0.015} & =3.333 \ldots \mathrm{~h} \\ & =3 \mathrm{~h} 20 \mathrm{~min} \end{aligned}$	Substitute the BAC into the formula $T=\frac{\mathrm{BAC}}{0.015}$ Convert the time to hours and minutes.

11 Complete the following to calculate how long you must wait for your BAC to drop to zero from 0.04%.

$$
\begin{aligned}
T & =\frac{\mathrm{BAC}}{0.015} \\
& =\frac{\square}{0.015} \\
& =\square \quad \mathrm{h}=\quad \quad \mathrm{h} \quad \quad_{\quad} \quad \min
\end{aligned}
$$

12 Calculate how long you must wait for your BAC to drop to zero from:
a 0.02%
b 0.06%
c 0.035%

13 a Calculate the BAC for a 80 kg male and 52 kg female, both with provisional licences, who consume 4 standard drinks in 3 hours.
b A zero BAC is a requirement of NSW law for all learner and provisional drivers. How long would the two people have to wait before they could legally drive a motor vehicle?

14 Damien and Nicole go to a party and start drinking at 8 pm . Damien drinks 8 schooners of full strength beer (12 standard drinks) over the next 5 hours. Nicole has 6 mixer drinks (9 standard drinks) in the same time.
a Calculate the BAC of both Damien and Nicole at 1 am .
b At what time will they be able to legally drive if they both have provisional licences?

15 Ben goes to a party and consumes two stubbies (375 mL) of full strength beer ($4.9 \% \mathrm{alc} / \mathrm{vol}$) in the first hour and one stubby per hour for the next 3 hours.
a Calculate the number of standard drinks he has consumed.
b Use the formula to calculate his BAC if he weighs 72 kg .
c How long will it be befong risAC drops to zero?

136 Speed, distance and time
2 G The formula for the average speed of an object is given below.

$$
\text { Average speed }=\frac{\text { distance travelled }}{\text { time taken }}
$$

This is usually written $S=\frac{D}{T}$
so it follows that $\quad D=S \times T$ and $T=\frac{D}{S}$

This formula is used to calculate the average speed, distance and time travelled.

WORKED EXAMPLE 1

a A car travels 232 km in 4 hours and 17 minutes. Calculate its average speed.
b A train averages $83 \mathrm{~km} / \mathrm{h}$ for 2 hours and 24 minutes. How far does it travel?
c If a motorcyclist can average $52 \mathrm{~km} / \mathrm{h}$, how long will it take her to travel 34 km ?

Solve	Think	Apply
$\begin{aligned} S & =\frac{232}{4.28333 \ldots} \\ & =54.16 \ldots \mathrm{~km} / \mathrm{h} \\ & =54 \mathrm{~km} / \mathrm{h} \text { (to nearest whole number) } \end{aligned}$	Change 17 minutes to hours. $17 \mathrm{~min}=17 \div 60 \mathrm{~h}=0.28333 \ldots \mathrm{~h}$ $4 \mathrm{~h} 17 \mathrm{~min}=4.28333 \ldots$ hours Or use the degrees, minutes seconds key on your calculator.	$S=\frac{D}{T}$
$\begin{aligned} D & =83 \times 2.4 \\ & =199.2 \mathrm{~km} \end{aligned}$	Change 24 minutes to hours. $24 \mathrm{~min}=24 \div 60=0.4 \mathrm{~h}$	$D=S \times T$
$\begin{aligned} T & =\frac{34}{52} \\ & =0.6538 \ldots \text { hours } \\ & =39 \mathrm{~min}(\text { to nearest } \mathrm{min}) \end{aligned}$	$\begin{aligned} 0.6538 \ldots \text { hours } & =0.6538 \ldots \times 60 \mathrm{~min} \\ & =39.23 \ldots \mathrm{~min} \end{aligned}$ Or use the degrees, minutes seconds key on your calculator.	$T=\frac{D}{S}$

EXERCISE 13G

1 Calculate the average speed if:
a 185 km is travelled in 4 h
b 720 km is travelled in 9 h and 50 min
c $\quad 154 \mathrm{~km}$ is travelled in 3 h and 15 min
d 272 km is travelled in 4 h and 35 min
2 a Calculate the distance travelled in 31 ana 50 min at an average speed of $64 \mathrm{~km} / \mathrm{h}$
b Calculate the distance travellenins h and 20 min at an average speed of $56 \mathrm{~km} / \mathrm{h}$
c Calculate the distance travelicd in 5 h and 47 min at an average speed of $82 \mathrm{~km} / \mathrm{h}$
d Calculate the distance travelled in 2 h and 13 min at an average speed of $75 \mathrm{~km} / \mathrm{h}$

3 How long will it take to travel:
a 486 km at $60 \mathrm{~km} / \mathrm{h}$
b 298 km at $74 \mathrm{~km} / \mathrm{h}$
c 365 km at $82 \mathrm{~km} / \mathrm{h}$
d 88 km at $95 \mathrm{~km} / \mathrm{h}$

WORKED EXAMPLE 2

Convert $65 \mathrm{~km} / \mathrm{h}$ to m / s.

Solve	Think	Apply
$65 \mathrm{~km} / \mathrm{h}=\frac{65 \times 1000}{60 \times 60} \mathrm{~m} / \mathrm{s}$	$65 \mathrm{~km}=65 \times 1000 \mathrm{~m}$ and	Change kilometres to metres
$=$	$1 \mathrm{~h}=60 \times 60=3600 \mathrm{~s}$	(by multiplying by 1000), change
	(to 1 decimal place)	$\frac{65 \times 1000}{60 \times 60}=18.055 \ldots$
hours to seconds (by multiplying		
by 60×60) and divide.		

4 Complete the following to convert to m / s :

$$
70 \mathrm{~km} / \mathrm{h}=\frac{70 \times \square}{\square \times \square}=\ldots \mathrm{m} / \mathrm{s} \text { (to } 1 \text { decimal place) }
$$

5 Convert the following to m / s.
a $45 \mathrm{~km} / \mathrm{h}$
b $76 \mathrm{~km} / \mathrm{h}$
c $110 \mathrm{~km} / \mathrm{h}$

WORKED EXAMPLE 3

Convert $9.8 \mathrm{~m} / \mathrm{s}$ to km / h.

Solve	Think	Apply
$9.8 \mathrm{~m} / \mathrm{s}=\frac{9.8 \times 60 \times 60}{1000}$ $\mathrm{~km} / \mathrm{h}$	9.8 m in $1 \mathrm{~s}=9.8 \times 60 \mathrm{~m}$ in 1 min $=(9.8 \times 60) \times 60 \mathrm{~m}$ in 1 h	Change m / s to $\mathrm{m} / \mathrm{h}(\mathrm{by}$ multiplying by $60 \times 60)$, change m to km (by dividing by 1000$).$

6 Complete the following to convert to km / h :

$$
\begin{aligned}
8 \mathrm{~m} / \mathrm{s} & =\frac{8 \times \square \times \square}{\square} \\
& =\quad \mathrm{km} / \mathrm{h}
\end{aligned}
$$

7 Convert the following to km / h.
a $15 \mathrm{~m} / \mathrm{s}$
b $12.5 \mathrm{~m} / \mathrm{s}$
c $25 \mathrm{~m} / \mathrm{s} \mathrm{C}$

13H Car stopping distances

The distance a car travels in the time it taked it sop is:
Stopping distance $=$ reaction-time distance $\#$ braking distance

The reaction-time distance is the distance travelled in the time it takes the driver to react to a situation; that is, to realise there is a problem and move their foot to the brake. The usual reaction time, for drivers unaffected by alcohol, drugs or fatigue, has been found to be about 2.5 s .

The braking distance is the distance the car travels after the brakes have been applied. This distance depends on (the square of) the speed of the car.
Note: Factors such as the condition of the road (wet or dry), the car's brakes and tyres, as well as the state of the driver, all have an effect on the stopping distance.

WORKED EXAMPLE 1

Calculate the reaction-time distance for a car travelling at $60 \mathrm{~km} / \mathrm{h}$. Assume a reaction time of 2.5 s .

Solve	Think	Apply		
Distance travelled $=\frac{60000}{60 \times 60} \times 2.5$	$60 \mathrm{~km} / \mathrm{h}=\frac{60 \times 1000}{60 \times 60} \mathrm{~m} / \mathrm{s}$	Convert the speed to m / s and use $D=S \times T$.		
	$=41.7 \mathrm{~m}$			
(to 1 decimal place)				The distance a car travelling at
:---				
$60 \mathrm{~km} / \mathrm{h}$ will travel before the				
driver applies the brakes in reaction				
to a situation is about 42 m.	\quad.			

The reaction-time stopping distance for a car travelling at $v \mathrm{~km} / \mathrm{h}$, assuming a reaction time of 2.5 s , can be found as follows.

$$
\begin{aligned}
& 1 \mathrm{~km} / \mathrm{h}=\frac{1000}{60 \times 60} \mathrm{~m} / \mathrm{s}=0.277 \ldots \mathrm{~m} / \mathrm{s} \\
& v \mathrm{~km} / \mathrm{h}=v \times 0.277 \ldots \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Distance travelled in $2.5 \mathrm{~s}=(v \times 0.277 \ldots) \times 2.5 \mathrm{~m}$

$$
=v \times 0.694 \ldots \approx 0.7 v \mathrm{~m}
$$

EXERCISE 13H

1 Complete the following to calculate the reaction-time stopping distance for a car travelling at $80 \mathrm{~km} / \mathrm{h}$. Assume a reaction time of 2.5 s .
Distance travelled in $2.5 \mathrm{~s}=(\ldots \times 0.277 \ldots) \times 2.5 \mathrm{~m}$
\qquad
$=$ m (to 1 decimal point)

2 Calculate the reaction-time distance for a car travelling at $100 \mathrm{~km} / \mathrm{h}$. Assume a reaction time of 2.5 s .
3 a Use the results of questions $\mathbf{1}$ and $\mathbf{2}$ to draw a (straight-line) graph of the relationship between reaction-time distance (m) and speed $(\mathrm{km} / \mathrm{h})$, given a reaction time of 2.5 s .
b Use the graph to estimate the reaction-time distance for a car travelling at:
i $120 \mathrm{~km} / \mathrm{h}$
ii $45 \mathrm{~km} / \mathrm{h}$
c If the speed of a car increases by $10 \mathrm{~km} / \mathrm{h}$, what is the increase in the stopp distance?
4 a If a driver affected by fatigue has a reaction time of 3.5 s , what 11 be the reaction-time stopping distance of a car travelling at $60 \mathrm{~km} / \mathrm{h}$?
b What is the difference between the stopping distanee with a reaction time of 3.5 s and the stopping distance with the reaction time of 2.5 s ?

5 If a driver affected by alcohol has a reaction time of 4.5 s , what difference will this make to the reaction-time distance of a car travelling at $100<\mathrm{m} / \mathrm{n}$ compared with the usual reaction time of 2.5 s ?

The braking distance is function of the square of the speed of the car. For a car with good brakes and tyres, travelling in dry conditions on a good road, the relationship can be approximated by the formula $d=0.01 \nu^{2}$, where d is the braking distance in metres and v is the speed of the car in km / h.
For the same car travelling on a slippery road, the formula for braking distance becomes $d=0.014 v^{2}$.

WORKED EXAMPLE 2

Calculate the braking distance for a car travelling in dry conditions at $60 \mathrm{~km} / \mathrm{h}$.

Solve	Think	Apply		
Braking distance $=0.01 \times 60^{2}$				
	$=36 \mathrm{~m}$	Substitute $v=60$ into the formula $d=0.01 v^{2}$.		Substitute the value of v into
:---				
the dry conditions formula.				

6 Complete the following to calculate the braking distance for a car travelling in good conditions at $80 \mathrm{~km} / \mathrm{h}$.
Braking distance $=0.01 \times ـ^{2}{ }^{2}$
\qquad m

7 a Calculate the braking distance for a car travelling in good conditions at $100 \mathrm{~km} / \mathrm{h}$.
b What is the braking distance of the car at $100 \mathrm{~km} / \mathrm{h}$ in wet conditions?
c What is the difference between the braking distances at $100 \mathrm{~km} / \mathrm{h}$ in good conditions compared with wet conditions?

WORKED EXAMPLE 3

Find the total stopping distance for a car travelling at $70 \mathrm{~km} / \mathrm{h}$ in good conditions and assuming a reaction time of 2.5 s .

Solve	Think	Apply
Stopping distance	Reaction-time distance	Add the reaction-time
$=\frac{70000}{60 \times 60} \times 2.5+0.01 \times 70^{2}$	$=\frac{70000}{60 \times 60} \times 2.5=48.611 \ldots \mathrm{~m}$	distance to the braking
$=97.611 \ldots \mathrm{~m}$	Braking distance $=0.01 \times 70^{2}=49$	
$=98 \mathrm{~m}($ to nearest m$)$	\therefore Total stopping distance $=97.611 \ldots \mathrm{~m}$	

8 Complete the following to find the total stopping distance for a car travelling at $90 \mathrm{~km} / \mathrm{h}$ in good conditions and assuming a reaction time of 2.5 s .

$$
\text { Stopping distance }=\frac{\square}{\square \times \square} \times 2.5+0.01 \times \square^{2}
$$

$$
=\ldots \ldots \mathrm{m}(\text { to nearest } \mathrm{m})
$$

9 Find the total stopping distance for a car travelling at $110 \mathrm{~km} / 1 \mathrm{~m} / \mathrm{good}$ conditions and assuming a reaction time of 2.5 s .

10 If the speed of a car increases from $50 \mathrm{~km} / \mathrm{b} / 0.50 \mathrm{~m} / \mathrm{h}$, what is the increase in stopping distance?

WORKED EXAMPLEG

Find the total stopping di.tance for a car travelling at $70 \mathrm{~km} / \mathrm{h}$ in good conditions, assuming a reaction time of 2.5 s , using the formula $a=0.7 v+0.01 v^{2}$, where d is the stopping distance in metres and v is the speed in km / h.

Solve	Think	Apply
$d=0.7 \times 70+0.01 \times 70^{2}$ $=98 \mathrm{~m}$	Substitute $v=70$ into the formula $d=0.7 v+0.01 v^{2}$.	Substitute the value of v into the formula.

13016 Photo showing reaction stopping speed: such as on of the ads where cars come to a stop slowly or not quickly enough

11 a Use the formula in Example 4 to complete the following table.

Speed (km/h)	0	20	40	60	80	100
Stopping distance (m)		$0.7 \times 20+0.01 \times 20^{2}=18$				

b Use the information in the table to graph the relationship between speed and stopping distance. (Join the points by a smooth curve.)
c From the graph, estimate the stopping distance for a car travelling at:
i $50 \mathrm{~km} / \mathrm{h}$
ii $120 \mathrm{~km} / \mathrm{h}$

12 For a driver under the influence of alcohol and driving in poor road conditions, the formula for stopping distance becomes $d=1.2 v+0.018 v^{2}$.
a Using a table similar to question 11, draw a graph of the relationship between speed and stopping distance for a driver under the influence of alcohol on the same set of axes as the graph above.
b From the graphs, what is the difference in stopping distances at:
i $50 \mathrm{~km} / \mathrm{h}$?
ii $60 \mathrm{~km} / \mathrm{h}$?
iii $110 \mathrm{~km} / \mathrm{h}$?

131
 Road accident statistics

EXERCISE 13I

1 Consider the following data on road fatalities in NSW from 1950 15.

Year	1950	1955	1960	965	1970	1975	1980
Number killed	634	820	978	1151	1309	1288	1303
Year	1985	190	1995	2000	2005	2010	
Number killed	106	797	620	603	508	405	

a Draw a line graph for the data in the table.
b Comment on any trends in these figures.
c In which 5-year period did:
i the largest increase in fatalities occur?
ii the largest decrease in fatalities occur?
d Discuss why the number of fatalities has decreased since 1980 even though the number of registered vehicles has increased.

2 Consider the following data on road fatalities for the states/territories of Australia in 2010.

State	Killed	Fatalities per $\mathbf{1 0 0 0 0}$ vehicles	Fatalities per $\mathbf{1 0 0 0 0 0}$ population
New South Wales	405	0.9	5.6
Victoria	288	0.7	5.2
Queensland	249	0.7	5.5
Western Australia	193	1.0	8.4
South Australia	118	1.0	7.2
Tasmania	31	0.8	6.1
Australian Capital territory	19	0.7	5.3
Northern Territory	49	3.6	21.4

a In which state/territory has the number of fatalities been the:
i highest?
ii lowest?
b In which state/territory has the number of fatalities/ 10000 vehicles been the:
i highest?
ii lowest?
c In which state/territory has the number of fatalities/10 000 population been the:
i highest?
ii lowest?
d For the number of fatalities per 10000 vehicles, find the:
i mean
ii median
iii mode
iv range
e Which state/territory has the safest roads? Discuss.

3 Consider the following data comparing Australia with other countries in 2010.

Country	Killed	Fatalities per $\mathbf{1 0 ~ 0 0 0 ~ v e h i c l e s ~}$	Fatalities per $\mathbf{1 0 0} \mathbf{0 0 0}$ population
Australia	1352	0.8	6.1
Canada	2209	1.0	6.6
Denmark	265	0.9	4.8
France	3992	1.0	6.4
Germany	3651	0.7	4.5
Japan	5745	0.7	4.5
Netherlands	640	0.7	3.9
New Zealand	375	1.2	8.6
Norway	210	0.6	4.3
Sweden	287	0.5	3.1
United Kingdom	1905	1.3	3.1
United States of America	3228		10.6

a In which countries are the fatalities/ 10000 vehicles:
i more than in Astralia?
b In which of these countries is driving the:
i safest?
c Discuss your results.
ii less than in Australia?
ii least safe?

13017 Photo of one of the

European autobarns or USA

freeways showing lots of lanes, lots
of cars and lots of congestion

4 Data for fatal car crashes by time period and day of week are given in the table below.

Time period	Day of week									
	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Total	
$00: 00-01: 59$	5	3	2	2	0	4	7	23		
$02: 00-03: 59$	6	2	1	0	1	1	1	12		
$04: 00-05: 59$	6	1	3	7	3	1	7	28		
$06: 00-07: 59$	2	3	4	5	5	4	6	29		
$08: 00-09: 59$	3	3	2	5	5	4	2	26		
$10: 00-11: 59$	5	3	7	0	4	4	5	28		
$12: 00-13: 59$	5	5	4	5	5	5	8	37		
$14: 00-15: 59$	5	6	11	3	5	13	9	52		
$16: 00-17: 59$	7	4	3	8	7	8	5	42		
$18: 00-19: 59$	3	3	3	6	5	6	6	32		
$20: 00-21: 59$	3	4	1	4	6	8	2	28		
$22: 00-$ midnight	4	3	0	2	1	9	9	28		
Unknown	0	0	0	0	0	0	0	0		
TOTAL crashes	54	42	41	47	47	67	67	365		

a How many fatal crashes were there between 2 am and 4 am on a Saturdigy
b Which day of the week had the most number of crashes?
c What percentage of accidents occur on the weekend?
d On which day of the week is it the safest to drive?
e Which time period had the most number of ra. nes? Explain why this might occur.
f Which day has the most crashes between midnight and 4 am ? Discuss.
5 Data for fatal crashes involving arcohol, speeding and fatigue in NSW 2010 are shown in the table below.

	Aivohol involved	Speeding involved	Fatigue involved
Yes	58	146	54
No or unknown	307	219	311
Total	365	365	365

a In how many fatal crashes was alcohol involved?
b In what percentage of all fatal crashes was alcohol a factor?
c In what percentage of fatal crashes was speed a factor?
d In what percentage of fatal crashes was fatigue a factor?

6 Data for fatal crashes by car drivers in NSW 2010, categorised by age and gender, are shown in the table below.

Gender	Age (years)										
	0-4	5-16	17-20	21-25	26-29	30-39	40-49	50-59	60-99	>70	Total
Male	0	2	34	35	16	40	31	25	16	29	228
Female	0	0	12	11	3	13	14	20	7	11	91
Total	0	2	46	46	19	53	45	45	23	40	319

a Which age group of had the most fatal accidents for:
i males?
ii females?
iii all car drivers?
b Which age group over 16 years of age, had the least number of fatalities for:
i males?
ii females?
iii all car drivers?
c What percentage of all car driver fatalities involved a male driver?
d What percentage of all car driver fatalities involved a person in the 17-20 age group?
7 The data for fatal crashes in NSW 2010, grouped by the licence status of car the driver, are shown in the table.
Draw a sector graph to show the number of learner, provisional, standard, unlicenced and unknown status car drivers who were involved in fatal crashes.

Licence status	Fatal crash
Learner	6
Provisional licence	60
Standard licence	221
Unlicenced	27
Dratown status	5
Total	$\mathbf{3 1 9}$

7H 8 The graph below shows the percentage of riders and passengers killed in motorcycle accidents in 2008, categorised by gender and age of death. Use the graph to answer the following questions.

a In 2008, approximately what percentage of all male motorcyclist deaths were:
i 17-25 years old?
ii 60-69 years old?
b Approximately what percentage of all female motorcycle deaths were:
i 17-25 years old?
ii 60-69 years old?
c Which age group of male motorcycle riders and passengers had the:
i highest number of fatalities?
ii lowest number of fatalities?
d Which age group of female motorcycle riders and passengers had the:
i highest number of fatalities?
ii lowest number of fatalities?
e Which age group of all motorcycle riders and passengers had the:
i highest number of fatalities?
ii lowest number of fatalities?
f The percentage of deaths per 10000 vehicles, for all registered vehicles and motorcycles, between 2004 and 2008, is shown on the graph. Approximately how many times more likely is a motorcyclist to be killed than a driver of any other type of vehicle?

9 The graph below shows the percentage of pedestrians deaths in 2008, categorised by rendes and age. Use the data to determine the following.

Pedestrians deaths by age groups and gender

a What is the probability that a male pedestrian who has been killed in an accident will be in the 26-39 years age group?
b What is the probability that a female pedestrian who has been killed in an accident will be in the 40-59 years age group?
c What is the probability that a pedestrian killed in an accident will be in the $60-69$ years age group?
d Which age group of male pedestrians is:
i most likely to be killed?
ii least likely to be killed?
e Which age group of female pedestrians is:
13019 Photo of people crossing a
i most likely to be killed?
ii least likely to be killed?
f Which age group of all pedestrians
i most likely to be killed?
ii least likely to be killed?

10 The table below gives the number of deaths per 100000 of population, of male and female drivers in the 17-25 years age group in Australia, for the period 1993 to 2007.

Year	$\mathbf{1 9 9 3}$	$\mathbf{1 9 9 4}$	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$
Male	16.7	14.9	17.1	17.0	14.5	13.3	15.1	14.0
Female	4.1	4.6	5.4	4.5	5.8	3.6	4.1	5.1

Year	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$
Male	15.2	13.5	13.6	12.9	12.5	13.1	12.1
Female	2.9	3.9	2.9	4.0	3.7	4.0	2.8

a Calculate the mean, median, mode and range of the number of deaths for each gender.
b Compare and discuss the main features of the data.
For more information on crash statistics visit:
www.rta.nsw.gov.au/roadsafety
www.infrastructure.gov.au/roads/safety

INVESTIGATION 13.1

Investigate and write a report on the purchase of a motor vehicle. Include selecting the whicle, making calculations for any funding needed, the type of lending institution and lending rate, the ar out payable in stamp duty, and the registration and insurance costs.
New and used vehicle prices can be found in motoring magazins and on Internet websites such as ww.redbook. com.au.

INVESTIGATION 13.2

1 Search the Internet for fuel orre watch websites to investigate trends in fuel prices for:
a different types of suer
b different locations (such as compare city and country prices)
Collect and present the data in tables and graphs.
2 Investigate cycles in the price of ULP. Describe a strategy that could be used to save money on fuel costs.
Some useful websites include:
www.mynrma.com.au
www.motormouth.com.au
www.fueltrac.com.au
www.icrc.act.gov.au/transport

INVESTIGATION 13.3

Use an online motoring costs calculator to estimate the running costs for several different types of vehicles, including motorcycles.
Visit www.mynrma.com.au

Cameras at intersections save lives, dollars

A landmark study has found that despite the public perception that road safety cameras are merely revenue-raising devices, they significantly reduce road accidents and so save the State of Victoria millions of dollars annually in associated crash costs.

The Monash University Accident Research Centre (MUARC) study found that fixed digital speed and red light (FDSRL) cameras caused a decrease in casualty crashes of between 26 to 47 per cent, depending on vehicle approach, in the areas immediately surrounding their placement. This saves the community the costs associated with medical treatment, property damage and lost productivity caused by road accidents.

Dr Stuart Newstead and Mrs Laurie Budd of MUARC analysed 87 of Victoria's 175 FDSRL cameras at intersections located across the state last year, comparing crash rates before and after the installation of the cameras with those comparable intersections without cameras.
'Across the areas we examined, the cameras led to 17 fewer crashes causing death or serious injury, and 39 fewer crashes causing minor injuries each year', Dr Newstead said. 'We estimate that this reduction represents at least $\$ 8$ million in crash cost savings each year.'

1 What is FDSRL an abbreviation for in this report?
2 What do you think is meant by the term 'casualty crash'.
3 What was the percentage decrease in casualty crashes at intereections where a camera had been installed?
4 List the three major costs to the community associated yith road accidents.
5 What percentage of Victoria's FDSRL caneras' did the researchers analyse?
6 How many fewer crashes causig death or serious injury occurred in this survey?
7 What were the savings in costs to the community?
8 Discuss the use of fixed speed and red light cameras in your area. Do you think taht they are merely revenue-raising devices?

Having completed this chapter

You should be able to:

- calculate the registration, stamp duty and insurance costs for new and used motor vehicles
- calculate the cost to finance the purchase of a motor vehicle
- solve problems related to the fuel consumption of a motor vehicle
- calculate the depreciation of the value of a motor vehicle using the straight line method and the declining balance method
- calculate the total running cost, including the standing costs and operating costs, of a motor vehicle
- calculate the number of standard drinks in a container, the BAC for males and females and the time it takes for your BAC to fall to zero
- solve problems related to speed, distance and time
- calculate the distance a motor vehicle travels in the time it takes to stop
- interpret tables and graphs related to motor vehicle accidents.

13 REVIEW TEST

1 The stamp duty charged when buying a car is 3% of the market value up to $\$ 45000$ plus 5% of the value over $\$ 45000$. The stamp duty to be paid on the purchase of a new car worth $\$ 56000$ is:
A $\$ 1680$
B $\$ 2800$
C $\$ 1900$
D $\$ 550$

2 The cost to register a new car that weighs 1504 kg and is used mostly for business is (use the table in Section A):
A \$321
B $\$ 472$
C $\$ 459$
D $\$ 683$

3 The monthly repayment on a loan of $\$ 12000$ over 5 years is $\$ 256.80$. The total amount of interest paid on this loan would be:
A \$15408
B $\$ 3408$
C $\$ 1284$
D $\$ 13284$

4 A car travels 480 km on 60 L of petrol. Its fuel consumption is:
A $12.5 \mathrm{~L} / 100 \mathrm{~km}$
B $0.125 \mathrm{~L} / 100 \mathrm{~km}$
C $8 \mathrm{~L} / 100 \mathrm{~km}$
D $28.8 \mathrm{~L} / 100 \mathrm{~km}$

5 How far can a motor vehicle travel on 45 L of petrol if its fuel consumption is $8.4 \mathrm{~L} / 100 \mathrm{~km}$?
A 5.36 km
B 536 km
C 18.7 km
D 187 km

6 Using the straight-line method, the value of a $\$ 25000$ car after 4 years if it depreciates $\$ 2650$ per year is:
A $\$ 22350$
B $\$ 17050$
C $\$ 19700$
D $\$ 14400$

7 A car that was purchased for $\$ 29900$ was worth $\$ 14300$ after 5 years, using the traight-line method of depreciation. What was the annual amount of depreciation?
A $\$ 14300$
B $\$ 15600$
C \$3120
D $\$ 11180$

8 A car is bought for $\$ 18500$. It depreciates in value by $? 2 \%$ per year. The book value of the car after 4 years is:
A $\$ 2220$
B $\$ 4070$
C $\$ 6848$
D $\$ 9.53$

9 A car depreciates in value from $\$ 35 \$ 25$ to $\$ 23550$ in 2 years. Using the declining balance method, the annual rate of depreciation is:
A 18\%
b 20%
C 36%
D 56%

10 The total running costs of a small car for the year were $\$ 8960$. If the car travelled 14800 km in the year, the average cost/kilometre was:
A $\$ 1.65 / \mathrm{km}$
B $\$ 16.50 / \mathrm{km}$
C $\$ 0.61 / \mathrm{km}$
D $\$ 6.10 / \mathrm{km}$

11 If a car travels 280 km in 3 h and 25 min , its average speed is:
A $86 \mathrm{~km} / \mathrm{h}$
B $82 \mathrm{~km} / \mathrm{h}$
C $93 \mathrm{~km} / \mathrm{h}$
D $42 \mathrm{~km} / \mathrm{h}$
$1270 \mathrm{~km} / \mathrm{h}$ is equivalent to:
A $1.2 \mathrm{~m} / \mathrm{s}$
B $0.02 \mathrm{~m} / \mathrm{s}$
C $1167 \mathrm{~m} / \mathrm{s}$
D $19.4 \mathrm{~m} / \mathrm{s}$
$1315 \mathrm{~m} / \mathrm{s}$ is equivalent to:
A $250 \mathrm{~km} / \mathrm{h}$
B $4.2 \mathrm{~km} / \mathrm{h}$
C $54 \mathrm{~km} / \mathrm{h}$
D $41.7 \mathrm{~km} / \mathrm{h}$

14 The distance a car travels in 2.8 s if its speed is $80 \mathrm{~km} / \mathrm{h}$ is:
A 6.2 m
B 7.9 m
C 62.2 m
D 373.3 m

If you have any difficulty with these questions, refer to the examples and questions in the sections listed.

Question	1,2	3	4,5	$6-9$	10	$11-13$	14
Section	A	B	C	D	E	G	H

13A REVIEW SET

1 How much extra does it cost to register a new Toyota Camry, which weighs 1460 kg , for business use compared with private use?

2 Calculate the stamp duty to be paid on the purchase of a new BMW that has a recommended retail price of $\$ 76000$.

3 a Calculate the total cost to purchase a new Holden Commodore given that the recommended retail price is $\$ 36000$, it weighs 1637 kg , CTP insurance is $\$ 477$ and the dealer delivery charge is $\$ 630$. The car is for private use and the owner decides to take out comprehensive insurance that costs $\$ 1150$ for the first year.
b If the buyer receives $\$ 16500$ for the trade-in of on her current vehicle, what is the changeover price to purchase the new vehicle?

4 Find the total cost to purchase a 3-year-old Mazda that has an advertised price of $\$ 11699$. Third-party property damage insurance is $\$ 479$.

5 a Complete the table below.

Price (\$000)	5	15	25	35	45	55	65	75	85
Stamp duty (\$)								S	

b Use the information in the table to draw a graph with price as the independent variable, on the horizontal axis, and stamp duty as the dependent variable, on the vertical axis. (Th1s is a piecewise function .)
c Use the graph to estimate the stamp duty on a vehicle purchased for:
i $\$ 33000$
(1) $\$ 70000$

6 Use the loan repayment table in Section B to answer the following questions.
a Calculate the monthly repayments on aloarl of $\$ 25900$ at 10% pa. reducible over 5 years.
b What is the total amount of inter si paid on this loan.
c How much would be saved ev repaying the loan over 4 years instead of 5 years?
7 a Karen needs to borow $\$ 17000$ to buy a car and can pay a maximum of $\$ 390$ per month. She is offered a loan at 12% pa. Can she afford to take out the loan? Give details.
b Could she afford the loan if the interest rate was 14% ? What advice would you give Karen?
8 Jo's monthly repayment on a loan at 9% pa over 3 years is $\$ 381.60$. How much did Jo borrow?

13B REVIEW SET

1 If a car uses 55 L of petrol on a trip of 560 km , calculate the fuel consumption in:
a km/L
b L/km
c $\mathrm{L} / 100 \mathrm{~km}$

2 How far can a vehicle travel on 38 L of fuel if the fuel consumption is $9.4 \mathrm{~L} / 100 \mathrm{~km}$.
3 Calculate the amount of fuel used by a vehicle on a trip of 315 km , if the fuel consumption is $10.2 \mathrm{~L} / 100 \mathrm{~km}$.
4 A salesman averages 5400 km of city driving each month in a Ford Falcon that uses $11.4 \mathrm{~L} / 100 \mathrm{~km}$ (city cycle). Calculate the monthly cost of petrol used by the salesman if the average price of ULP was $139.9 \mathrm{c} / \mathrm{L}$.

5 A Citroën C4 uses $7.6 \mathrm{~L} / 100 \mathrm{~km}$ of ULP and the diesel version of the same car uses $6 \mathrm{~L} / 100 \mathrm{~km}$ of diesel fuel. Which car would be cheaper, and by how much, to drive a distance of 680 km if the price of ULP is $142.9 \mathrm{c} / \mathrm{L}$ and the price of diesel is $162.2 \mathrm{c} / \mathrm{L}$?

6 Barry owns a Holden Commodore that runs on ULP and uses $10.6 \mathrm{~L} / 100 \mathrm{~km}$. When converted to run on liquid petroleum gas (LPG), it uses $13.5 \mathrm{~L} / 100 \mathrm{~km}$. Barry averages 18000 km per year.
a Calculate the annual fuel cost of running a car on each type of fuel if the average price of ULP is 149 . c / L and of LPG is $67.8 \mathrm{c} / \mathrm{L}$?
b How much a year would Barry save in fuel costs if he converted the car to LPG?
c What is the saving per month?
d The cost of converting the car to LPG is $\$ 2500$. How many months would it take to break even, if Barry converts to LPG?
e What distance would Barry travel before he broke even?
7 a A car, when running on ULP, uses $12 \mathrm{~L} / 100 \mathrm{~km}$. The cost of ULP is $\$ 1.35 / \mathrm{L}$. Complete the table below to show the fuel cost of of driving this car.

Distance travelled (km)	0	10000	20000	30000	40000	50000
Fuel cost (\$)	0	1620				

b Use the information in the table to draw a graph of fuel cost versus distance travelied.
c The diesel motor version of the same car costs $\$ 1600$ more than petrol ers and uses $8 \mathrm{~L} / 100 \mathrm{~km}$. Diesel fuel costs $\$ 1.60 / \mathrm{L}$. Complete the following table to show the fue. Cost of driving this car.

Distance travelled (km)	0	10000	200010	30000	40000	50000
Fuel cost (\$)	1600	2880				

d On the same axes as the graph in part \mathbf{b}, haw graph of fuel cost versus distance travelled, for the diesel car.
e From the graph, estimate the distarice travelled to reach the break-even point.
8 A car purchased for $\$ 15800$ Gerreciates $\$ 1760$ per year. Calculate its book value after 5 years.
9 A car that was púcl ased for $\$ 22990$ was worth $\$ 15190$ after 4 years, using the straight-line method of depreciation. Calculate the annual amount of depreciation.

10 A new car is purchased for $\$ 29000$. It depreciates in value at a rate of 21% per year.
a Calculate the book value of the car after 3 years.
b By what amount has the car depreciated in value over the 3 years?
11 A car depreciates in value from $\$ 33000$ to $\$ 19000$ in 2 years. Use the declining balance formula to calculate the annual percentage rate of depreciation.

12 A car is purchased for $\$ 19$ 900. The straight-line depreciation amount is $\$ 3900$ and the declining balance percentage rate is 40%.
a Complete the following table to find the depreciated value using both methods.

Year	Value straight-line method value (\$)	Declining balance method value (\$)
0	19900	19900
1	16000	11940
2		
3		
4		
5		

b Draw a graph of the depreciation of the car under both methods, on the same set of axes.
c Find the value of the car after 2 years, under each method.
d Find the value of the car after $3 \frac{1}{2}$ years, under each method.
e After what time is the depreciated value the same under both methods?

13C REVIEW SET

1 The table below shows the average annual running costs for the vehicles listed. The cratichations are based on buying a new vehicle for private use and operating it for 5 years. The interest chages are based on 100% of the total cost of the new vehicle being financed by a loan. It is assumed that the vehicle travels 15000 km each year.

Average annual running costs	Ford Focus (smai)	Holden Commodore (large)	Toyota RAV4 (compact SUV)
Standing costs:			
Depreciation (\$)	3120	5928	
Interest (\$)		2444	2288
On-road costs, road servici membership (\$)	1248	962	1061
Operating costs:			
Fuel (\$)	1898		2340
Tyres (\$)	146	146	208
Service and repairs (\$)	671	634	952
Total (\$)	8607		
Average costs:			
Total cost/week (\$/week)	165.52	245	223.71
Total cost/kilometre (c/km)	57.4	84.9	

a Calculate the missing values in the table.
b Add another column to the table and use the information below to calculate the cost per week and cost per kilometre to run a Nissan Pathfinder (dealer price $\$ 52000$):

Average depreciation each year is 13.6% of the dealer price.
Average annual rate of loan interest is 6.5% (assume the total cost of the vehicle is financed by the loan).
On-road costs are $\$ 23$ per week.
Fuel consumption is $12 \mathrm{~L} / 100 \mathrm{~km}$ and fuel price $145.9 \mathrm{c} / \mathrm{L}$. Assume vehicle travels 15000 km each year.
Tyres cost \$294 per year.
Services and repairs are $\$ 18.60$ per week.

2 Three people, who live in the same general area and work at the same location, drive to work each day. Elizabeth owns a Ford Focus, Monique a Holden Commodore and Tanya a Toyota RAV 4.
a Over a 3-week period, how much does it cost each person to drive to work?
b They decide to form a car pool and take turns driving to work on a weekly basis: each person drives everyone to work 1 week out of every 3 weeks. How much does each person save, every three weeks, by forming the car pool?
c What are the annual savings per year, for each person (assume 52 weeks)?
3 Calculate the number of standard drinks in a 120 mL glass of red wine given that the alcohol content of the wine is $14.6 \% \mathrm{alc} / \mathrm{vol}$.

4 a Calculate the BAC of a 76 kg male who has consumed 5 standard drinks in 3 hours
b Calculate the BAC of a 52 kg female who has consumed 4 standard drinks in 4 hours.
5 Calculate how long you must wait for your BAC to drop to 0 from 0.06%.
6 a Calculate the BAC for a 75 kg male and 53 kg female, both with provisional licences, who consume 4 standard drinks in 3 hours.
b A zero BAC is a requirement of NSW law for all learner and provisional drivers. How long would the two people have to wait before they could legally drive a motor vehicle?

13D REVIEW SET

1 a A car travels 252 km in 4 h and 19 min . Calculate its average speed.
b A train averages $84 \mathrm{~km} / \mathrm{h}$ for 2 h and 36 min . How fat does it travel?
c If a cyclist can average $15 \mathrm{~km} / \mathrm{h}$, how long wil it take her to travel 28 km ?
2 Convert the following.
a $55 \mathrm{~km} / \mathrm{h}$ to m / s
b $21.4 \mathrm{~m} / \mathrm{s}$ to km / h

3 Calculate the reactip--lime distance for a car travelling at $60 \mathrm{~km} / \mathrm{h}$. Assume a reaction time of 2.5 s .
4 Calculate the braking distance for a car travelling in good conditions at $80 \mathrm{~km} / \mathrm{h}$ using the formula $d=0.1 v^{2}$.
5 For a car travelling on a slippery road, the formula for braking distance becomes $d=0.015 v^{2}$. What is the braking distance of the car at $100 \mathrm{~km} / \mathrm{h}$ in wet conditions?

6 Find the total stopping distance for a car travelling at $90 \mathrm{~km} / \mathrm{h}$ in good conditions. Assume a reaction time of 2.5 s and braking distance $d=0.01 v^{2}$.

7 Find the total stopping distance for a car travelling at $80 \mathrm{~km} / \mathrm{h}$ in good conditions using the formula $d=0.7 v+0.01 v^{2}$, where d is the stopping distance in metres and v is the speed in km / h.

8 For a driver under the influence of alcohol and driving in poor road conditions, the formula for stopping distance becomes $d=1.1 v+0.018 v^{2}$.
a Complete the table below and draw a graph of the relationship between speed and stopping distance.

Speed (km/h)	0	20	40	60	80	100
Stopping distance (m)						

b From the graph estimate the stopping distance at:
i $50 \mathrm{~km} / \mathrm{h}$
ii $70 \mathrm{~km} / \mathrm{h}$
iii $110 \mathrm{~km} / \mathrm{h}$

13 EXAMINATION QUESTIONS (15 MARKS)

a Harry goes to a party and drinks three stubbies (375 mL) of full strength beer ($4.7 \% \mathrm{alc} . / \mathrm{vol}$.) in the first hour and two stubbies per hour for the next 3 hours.
i Calculate the number of standard drinks he has consumed.
ii Calculate his blood alcohol concentration after 4 hours if he weighs 78 kg .
iii How long will it be until his BAC drops to zero?
b

Interest rate (\% p.a.)	Term of loan (months)					
	$\mathbf{1 2}$	$\mathbf{2 4}$	$\mathbf{3 6}$	$\mathbf{4 8}$	$\mathbf{6 0}$	
8	86.99	45.23	31.34	24.41	20.28	
9	87.45	45.68	31.80	24.89	20.76	
10	87.92	46.14	32.27	25.36	21.25	

i Jenny borrows $\$ 21500$ to buy a new car. Use the table above to calculate the monthly repayment on this loan at 9% p.a. over 3 years. What is the total amount of interest Jenny pays on this loan?
ii Jack's monthly repayment on a loan at 8% over 5 years is $\$ 334.62$.
Use the table above to calculate how much Jack borrowed?
c The total stopping distance, d, of a car travelling at $v \mathrm{~km} / \mathrm{h}$, under good condition: is given by the formula $d=0.8 v+0.01 v^{2}$.
i Calculate the stopping distance if the speed of the car is $60 \mathrm{~km} / \mathrm{h}$.
ii If the speed of the car is increased by $10 \mathrm{~km} / \mathrm{h}$, what is the increase in the stopping distance? (2 marks)
d The graph below shows the percentage of crashes re ulting in the death of a driver aged less than 26 years, by time of the day and day ofthe week.

i What percentage of fatal crashes involving a driver under 26 occurred between noon and $5: 59 \mathrm{pm}$ on a Tuesday?
ii At what time of the week do most fatal crashes occur?
iii On what day of the week do the most fatal crashes occur?
e Convert $75 \mathrm{~km} / \mathrm{h}$ to m / s.

